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The cold-beam nonphysical instability due to the aliases produced by the numerical 
spatial grid is presented in detail for momentum-conserving linear weighting codes. Addi- 
tions to previous work include: linear analysis dispersion diagrams showing large growth 
rates, wi < 0.2 wp ; methods for reducing wi , effectively broadening the finite-size particle 
width; simulation results verifying the linear theory, plus plots showing the p = 1 alias in 
phase space (v, , x); the growth of beam thermal spread (vt” in temperature) and loss of 
energy conservation; end-of-growth (saturation) at small thermal spread (hn/dx = vt/ 
w,Ax c: 0.046, for As/Ax = vO/wsAx > 0.3, i.e., vt < O.l4v,), with return to near energy 
conservation (stability); demonstration of no growth for a warm beam, with v$(initial) > 
v,(saturation); and the mechanism of stabilization (trapping). A thermal (Maxwellian) 
plasma, also nonphysically unstable at small AD/Ax, is also found to approach stabilization 
by self-heating. The two-stream physical instability is affected by the grid, with the aliasing 
instability also present; the linear theory for this is presented, with guidelines for minimizing 
the effects of the grid. 

1. INTRODUCTION 

Nonphysical plasma instabilities may be generated by interaction of the charged 
particles with the computational spatial grid. These have been found analytically 
by Langdon [I] and Chen et al. [2], and verified in simulation by Langdon [3], 
Okuda [4], and Chen et al. [2] for both momentum- and energy-conserving programs. 
(The reader will find an up-to-date compact review of simulation theory in Langdon 
[5].) The plasmas they studied had either a Maxwellian velocity distribution with no 
drift (unstable in momentum-conserving programs for h,/dx 5 0.3 and stable in 
energy-conserving programs) or no velocity spread, but a drift, v,, , called a cold beam 
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FIG. I. One-dimensional periodic model of a beam drifting through the spatial grid used for 
solving for charge density, potential, and field. The drift velocity is a0 ; the beam may be warm, with 
thermal velocity at, with distribution function as sketched. The period is L; typically the number of 
cells is 32, as shown. 

(unstable in both programs). The temporal growth rates predicted and measured were 
not small (on the order of 0.1 to O.~W,), so these nonphysical instabilities could 
intrude seriously on real physical effects. Indeed, adding the least amount of drift 
to a cold plasma (which is stable) ushers in this unwanted effect. 

The model for our theory and simulations is in Fig. 1. We first explore growth rates 
for the cold-beam instability (A, = 0, othermat = 0), seeking various cures such as 
modifying the particle (and force) weightings and interlacing (two grids in one time 
step; see Chen et al. [2]), as well as by smoothing (in k space) and particle broadening. 
These are found to reduce growth rates by a factor of 10 to 20 (down to O.Olw,,), 
which probably are sufficiently small to cause little trouble in most simulations. 

The pertinent beam parameter here is defined by 

For all B > 0, momentum-conserving programs show the beam instability; for 
0 < B 5 l/n N 0.3, energy-conserving programs show the beam instability. 

We next show the results of several cold-beam simulations, with momentum- 
conserving programs, varying B from 1/4rr ru 0.08 to 1.0. The interesting result is 
that the instability heats the beam, adding a vthermat > 0, which increases exponentially 
and then stops at X,/Ax = 0.046 (as does the exponential growth of all other quan- 
tities); the system has become stable. These results were presented earlier by 
Birdsall et al. [6]. The larger the value of the beam parameter, B, the smaller the final 
value of z’Ju~ . The same final value of nt occurs, independent of the initial value of zif , 
Up to (Ut)final ; if (Vt)initial 2 (n&tanre , then the system is stable from the start. Hence, 
one may either start off with a cold beam and let the self-heating take place through 
to saturation or add a small velocity spread to the drift and start off stably. The theory 
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for saturation at /\,/dx = 0.046 has been worked out by Albritton and Nevins [7] 
and is given here. 

A nondrifting thermal (Maxwellian) plasma was also run in the unstable region, 
X,/&C = 0.1. Indeed, the plasma temperature increased rapidly at first (due to the 
nonphysical instability) and then more slowly (due to the larger-than-thermal field 
level), apparently moving toward h,/dx N 0.25 asymptotically. This is interpreted 
as the same form of approach to saturation as observed with the cold beam. 

Finally, we show the results of linear analyses, including grid effects (the aliasing), 
for two opposing cold beams. The purpose is to show that the physical two-stream 
instability, simulated many times in many ways over the past 20 years, is little affected 
by the cold-beam grid instability. 

2. LINEAR ANALYSIS; GROWTH RATES 

In this section, we apply the theory of Langdon [I] to a one-dimensional periodic 
system of period L, uniform in each period. One set of particles has drift velocity c,) ; 
the other set, of opposite sign of charge, is immobile, simply neutralizing. There are 
NC cells with length dx- = L/NC. The time step, d?, is considered short so that 
effects of finite dt are ignored. 

All first-order perturbed quantities propagate as 

exp i(wt - kx). (1) 

Langdon’s dispersion relation for one cold beam is 

(2) 

where wD is the plasma frequency, K2 is the finite-difference Laplace operator, I 

is the finite-difference gradient operator, P(k) is the Fourier transform of the effective 
shape of the particle, dependent on the method (order) of interpolation used, and the 
wave numbers are 

k,, 1 k -pk,, p = 0, &I, *2 )...) (3) 

The poles in Eq. (2) are obviously of interest and will turn out to be (roughly) the 
wrear of the unstable modes 

These frequencies are shown in Fig. 2 along with Wgrid , 

(5) 

w,, - 2n ;y, (-1 (6) 
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FIG. 2. Sketch of the poles of the dispersion (w, k) relation (roughly, the location of wt,,J for 
a cold beam in a spatial grid, showing the physical pole (p = 0) and the alias poles (p # 0), which 
are due to the grid and are nonphysical. 

The different spatial harmonic (Brillouin) zones are also identified. The interactions 
leading to instability are between the real beam and the p = 51, 12, etc., aliases; 
these are wholly nonphysical, a result of the (mathematical) spatial gridding. 

In all of the earlier work, the drift and thermal velocities were defined in terms of a 
factor times wfl Ax; here we will be concerned with similar normalizations, with the 
familiar ratio of Debye length to grid spacing, 

and a similar parameter for the beam, defined by 

(7) 

(8) 

The nature of the instability changes in the vicinity of ws = w@;rid such that we define 
slow beams by 

wg < Ul,Y I3 c li27r = 0.159 (9) 

and fast beams by 

W<J > u,, 3 B > 1/2rf. (10) 

Earlier simulations [l-4] were with slow beams, B z 0.12, thus missing some 
important effects. 



PLASMA SELF-HEATING AND SATURATION 

FIG. 3. Approximate solution of the dispersion relation, Eq. (2) for B = 0.32, wI N 2~0, with 
p = 0, & 1, &2 terms only, for real k, complex w. w,,&~ is shown solid and wimag is shown dashed. 
The letters connect real and imaginary parts of w. If  more values ofp were kept, there would be more 
wimag, but smaller than those shown. 

Figure 3 shows a typical solution of Eq. (2) for a cold fast beam, B = 0.32 (d/n-), 
wg cz 2w,. The real parts of the roots for w  (solid lines) are much like the sketch 
of Fig. 2. The imaginary parts are shown dashed in Fig. 3 (and given exactly in Fig. 4); 
in the fundamental zone, the larger growth rate (wrmag) is due to interactions between 
the beam and p = 1 alias; the smaller, between the beam and p = 2; those for p > 3 
were not included in the solution but presumably would be smaller yet (nested inside 
p = 2 roots). Note that the larger growth rate, labeled a, has wreal given by thep = 1 
alias. The roots cutting through +op at k = 0 are wholly real (no growth), simply the 
Doppler-shifted Langmuir oscillations, as smoothed by the Poisson and gradient 
finite-difference operators. 

In solving Eq. (2), the Poisson operator, I?(k), was obtained from the usual three- 
point scheme so that 

sin(k &c/2) 
K’(k) = k2 [ (k AX/~) 1 2 

The gradient operator was the usual two-point form, giving, 

(11) 

for momentum-conserving programs in which the particle force is an interpolation 
of the differenced potential, and 

K(b) = 4, (13) 
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FIG. 4. Exact plots of solutions sketched in Fig. 3, for B = 0.32, w, N 2~0,. 

for energy-conserving programs in which the particle force may be regarded as the 
derivative of the interpolated potential [5]. The shape factor transform used was 

sin(k 0x/2) p 
S(k) = [ (k d-Y/2) 1 (14) 

with r = 2 for linear weighting (Figs. 3 and 4, CIC and PIC) and r = 3 for quadratic 
(spline) weighting. If the transformed charge density, p(k), is smoothed by SM(k), 
then SM appears outside the sum over p, as a product of uD2. 

The maximum growth rate found, (w&,, [solving Eq. (2)], is 

(wJ,,, ‘v 0.2 at k Ax N 3~~14 (15) 

meaning 11 dB growth per plasma cycle, which is uncomfortably large. This maximum 
value was found to be almost invariant with beam parameter, B, over the range, 

0.08 w l/477 < B < 4. (16) 

The character of wi(k) hardly changes as B increases from 0.32 (Fig. 4) to 4; however, 
for B = 1/4z-, 1/27r, w,/w, = 112, I, the character change is substantial but (wJ,,, 
is still roughly 0.2 (Fig. 5). 
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FIG. 5. 
p = 0, $1. 

Exact solutions for complex w for (a) B = I/(&T) and (b) B =- l/2,, (w,;w, = ];2, 1) for 



BIRDSALL AND MARON 

3. THEORETICAL METHODS OF REDUCING THE GROWTH RATES 

The maximum rate of growth can be decreased by quite a few methods, such as 

(a) attenuating p(k) at large k dx (easy and economical); 

(b) use of higher-order weighting of particles and forces (each particle, 
expensive); 

(c) use of Nl interlacing grids in one time step, dropping j p ; = 1, 2,..., Nl - 1 
aliases (inexpensive for NI = 2); 

(d) combinations of the above; 

(e) broader particles, obtained by use of particles nominally M dx wide 
(expensive). 

The results of these methods will now be summarized. 
Attenuating p(k) where wi(k) is large (and objectionable) simply means putting in a 

smoothing factor SM(k) in the Poisson solver (a no-cost solution). SM(k) will have a 
low-pass characteristic, saving the desired physics (say, for 0 < k dx < 1) and 
dropping the rest (k dx = 1 to v). Because smoothing is common and used to obviate 
other effects (such as nonlinear second harmonic feedback of k dx = 2n/3, i.e., this 
k dx doubles due to nonlinear phenomena to 477/3, then aliases back to 2rr/3), this 
step is highly recommended. The approximate result is to decrease q(k) to 
SM(k) wimag(k); this is an inexact statement (as the dispersion relation is more 
complicated) but sufficient for a first estimate. 

Quadratic weighting, use of r = 3 in S(k), Eq. (14), reduces the maximum growth 
rate to about 

w, N O.lw, at k Ax ‘v 47115. (17) 

Interlacing, using two grids per time step (NI = 2), simply drops out the p = 2 1 
aliases but leaves growth between p = 0 and p = 2 harmonics, with maximum 
growth rate 

wi ‘v 0.05~0,~ at k Ax - 3TT/4, (18) 

which is the same (w&,, as shown in Fig. 3 for p = 2 interaction. This result was 
also shown (at k Ax = v/2) by Chen et al. [2] in their Fig, 2, for B = 0.12. 

With quadratic weighting and one interlace (NI = 2) the maximum growth rate is 

wi N O.Olw,, at k Ax ‘v 3n/4 (19) 

All of the above refer to momentum-conserving programs 
For energy-conserving programs, the dispersion relation Eq. (2) need have only the 

modification given by Eq. (13). Langdon [ 11 noted that such programs would have a 
threshold in B; he surmised stability for B > I !2n. We found that there was stability 
for 

B 2 Ijn. wo 
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We found growths, in the fundamental zone, of 

(O&ax c! 0.2aJ, to 0.3w, (21) 

for B == 114~ and 1/2n; no growth was found for B = l/n, 1, 2, 3, and 4 using 
p = 0, 51, f2. [That is, we did not establish the sharpness of the inequality in 
Eq. PO).1 

The last modification tried was the use of particles nominally (no grid) M dx wide; 
such particles are seen by the grid in linear weighting as trapezoidal in shape, with 
base width of (M + 1) dx and top width of (M - 1) dx. For solving Eq. (2), we need 
the transform of this trapezoidal shape, which is 

sin(k dx/2) 
S(k) = [ (k Ax/2) I[ 

sin(Mk AX/~) 
(Mk AX/~) 1 ’ 

M = 1, 2, 3,. . . . (22) 

The first zero of S(k) is at k Ax = 27r/M, which falls in the fundamental zone for 
M 3 2, implying reduced alias coupling for M 2 2. Growth rates are found as 
follows: 

Particle width, M (Wi>TIltLX/W, k AX at (wi),, 

1 0.205 2.4 
2 0.103 1.75 
3 0.056 1.2 
4 0.036 0.9 
8 0.012 0.45 

Clearly (wJ,,, decreased (like l/M), but so does the region where interesting 
physics might be done [say, for 0 < k Ax < k Ax at (w&J. The broader particles, 
while reducing the alias coupling, also reduce the resolution, demanding an increase 
in the number of grid points if the resolution is to be regained. Worse yet, the addi- 
tional particle and force weighting (for A4 > 2 relative to the common A4 = 1, 
CIC or PIC) is expensive in computation time. Finally, as kindly pointed out to us by 
Langdon, our S(k), which appears as S2(k,,) in Eq. (2), can be factored as 

such that the last factor can be taken outside the sum over p. That is, the whole effect 
of particle weighting (M = 1, 2, 4, 8, whatever) can be obtained in simulation by 
using a smoothing factor, which is the second factor in Eq. (23), at no cost over M = I. 
The crowning insult is that this smoothing factor is rather poor (too much attenuation 
at small k Ax, where the physics is to be kept). A better choice is use of a rounded 
step-function smoothing with no damage to physics at small k Ax. 
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The choice of smoothing, weighting, and, or interlacing for diminution of wi is up 
to the user. 

4. SIMULATION RESULTS FOR INITIALLY COLD BEAM 

Previous authors [l-4] have shown clearly that the instability exists, that it grows 
at about the calculated rate, and that the wavelengths observed in the aliases (in the 
particle phase-space plots, for k dx > r) are at the proper values. However, they 
worked at B 5 0.12, the slow-beam regime, where (we will see) stability or quiescence 
comes in only when the beam is heated to ut 2 zi(, (not a very distinct beam). Our 
results were obtained out to B > 1, where stability occurs with vt < Do . We present 
a verification of growth rates, the saturation or change-of-state, and stability criteria. 
The results presented are for a momentum-conserving program, with the three and 
two point finite-difference operators implied by Eqs. (I 1) and (12). Simulations using 
energy-conserving programs were given by Langdon [3] for his parameters, where the 
prime result was loss of the drift motion. 

In all runs there were NP = 6400 particles of one sign and an immobile neutralizing 
background. Other units (arbitrarily chosen) were q/177 = I, w,, = I /277, dt = 27r/lO 

0.321 
I 

(a) (bl 

Id) 

FIG. 6. Snapshots at w,r Y 25 of (a) particle t’l versus x showing strong alias structure, at wave- 
lengths shorter than two cells (19 or 20 peaks in 32 cells) and of (bHd) grid-measured charge density 
p, potential 4, electric field E, showing 11, 12, or 13 peaks. Mode 20 aliases to 12: mode 19 aliases 
to 13,asseen. B = 0.32, w9;wBru 2. 
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(so wy dt = O.l), kmin = l/32 (so L = 2x x 32 = 201.06); the number of cells, 
NG, was 32 (used in most runs), so wP Ax = I; hence, in these units B = q, , 
&,/Ax = v, . There was no smoothing; SM(k) = I for all k. 

The behavior for B = 0.32 displays features for most other values of B and was 
shown earlier in analysis. Hence, this will be explored in some detail. 

-6 
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FIG. 7. Electrostatic energy versus time for (a) modes 1, 2, 3, 4, which have almost no linear 
growth rate, and for (b) modes 9, IO, 11, 12, which have linear growth rates wi/op N 0.2; B = 0.32, 
wg’w,, : 2. 
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The particles were given a random displacement of 6x = 0.01 either side of 
uniform spacing (or l/32 = 0.0325); there was no initial velocity perturbation. 
Mode 8 (out of 16) was clearly seen in the phase space (0, , x) plot at t = dt/2. Well 
into the run (after about four plasma cycles, o,t N 25, t N_ 150) the effects of the 
aliasing are very clearly seen, as displayed in Fig. 6: In Fig. 6a ZJ, versus x shows 19 
or 20 distinct peaks (i.e., modes 19 and 20 would be relatively large if a continuous 
Fourier analysis were made); in Fig. 6b charge density p versus x, there are 13 distinct 
peaks; in Fig. 6c potential C#J versus x, there are 12 distinct peaks; and in Fig. 6d 
electric field E versus x, there are 11 distinct peaks. With NG = 32 cells, 16 modes 
can be found by finite Fourier analysis (as used here in p, c$, and E); the modes seen 
in v, - x plots beyond mode 16 are aliased into the fundamental zone about mode 16. 
That is, mode 20 in v, - x is read as mode 16 - (20 - 16) = 12; mode 19, as 
16 - (19 - 16) = 13, as is clearly the situation here. 

The individual modes were observed to grow as shown in the Fig. 7 plots of pk@ 
for modes 1 through 4 and 9 through 12. In Fig. 7a for the long wavelength modes, 
the early growth observed is very small, with plasma oscillations in mode 1 of period 

fpk@k= 
I I I - 

10-2 - 

2 
5 10-4 5 - 
73 .$ 
.B e 
IL 2 

10-G - 
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FIG. 8. System energies versus time, for B = 0.32: (a) shows total electrostatic energy growth 
to saturation, about 11 ‘A of the initial kinetic energy, (b) shows total kinetic energy -&mu%, increasing 
by a little over 2 % of all particles, (c) shows thermal energy, *rn(G - C”) of all particles increasing 
to saturation, about 2 % of the kinetic energy, and (d) shows the total system energy, which grows 
by about 15 %, a real error; however, after saturation with the beam now slightly warm, there is no 
further growth and the total energy fluctuates roughly ~0.7 %, typical of stable programs. 



PLASMA SELF-HEATING AND SATURATION 13 

T = 40 as against T* = (2~)~ E 39.5 (not quite right either, as noted in the w  - k 
plots of Fig. 4, but close). In Fig. 7b the faster growing modes take off early, growing 
about 10’; the lack of oscillatory behavior is due to display of p& for a traveling 
wave, which drops the urea1 part. The linear growth rates for modes 8 through 15 
were measured (ranging from wi/w, of 0.145 to 0.208), falling almost exactly on top 
of the prediction of Fig. 4. The later-time growths of modes I through 4 is taken to be 
due to nonlinear interactions, occurring beyond t s 250 when modes 9 through 12 
have reached large amplitudes and are probably beating among themselves, physically. 

All of the system energies grow due to the instability, as shown in Fig. 8. In Fig. 8a 
the field energy grows at a rate close to that of the fastest growing mode 
(w,/02, E 0.188) to a level of about 11 % of the initial kinetic energy. In Fig. 8b the 
kinetic energy grows similarly. In Fig. 8c the thermal energy (obtained from 2 - 62) 
grows and saturates; a thermal velocity is defined from the saturation value as 

vt _ -- thermal energy at saturation lj2 
vo ( kinetic energy at t = 0 ) ’ 

While we have some measures of the velocity distribution, we cannot demonstrate 
that we observe f(v) - exp(-(v - ~,)~/2 vt2). In Fig. 8d the total energy is seen to 
grow by about 15 %; that is, energy conservation is lost due to the nonphysical 
instability. The fluctuations in total energy after saturation are about $0.7 %, which 
would be acceptable “conservation” for most runs, especially when the potential 
energy is as large as it is here. 

The saturation behavior signals an end to rapid self-heating due to the gridding; 
the initially cold beam has acquired a spread in velocities, the particles are now 
crossing, and total energy is now well conserved. 

5. SIMULATION RESULTS FOR AN INITIALLY WARM BEAM 

The obvious question is why not add an initial velocity spread to the beam and see 
whether there is less growth or stability? This was done. An initial random (Gaussian) 
velocity modulation was added at t = 0 starting with vthermal(t = 0) < vt (at satu- 
ration for an initially cold beam). The instability still occurred; the saturation energies 
remained the same, simply occurring earlier in time, as shown in Fig. 9. Next, starting 
out with vt(t = 0) = vt(saturation), little growth occurs (about 101.3 in mode 12 at 
k L3x = 3~/4); there is an initial rapid rise in field energy (in a time of about T,) 
to a value 10 times smaller than for vt(t = 0) = 0, doubling later as mode 12 saturates. 
The thermal energy is essentially flat in time. The total energy rises about 1 part in 300. 
Finally starting with v,(t = 0) = 2v,(saturation), the field energy immediately rises 
to a value 100 times smaller than for v,(t = 0) = 0 and stays there, the thermal energy 
maintains its initial value, and the total energy fluctuates about 1 part in 500. There 
are no growing modes. 
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FIG. 9. Thermal energy of all particles versus time, with various initial thermal velocities (about 
v,,) measured in terms of oJw,dx : a = 1.59 x lo-‘; b = 7.95 x 10e4; c = 3.98 x 1O-3; d = 1.19 x 
1O-2; e = 2.39 x IO-*; f  = 5 x lo-*. The mean value after saturation appears as 0.047 N 0.001. 
All initial values at or above this value remain at their initial values. 

6. STABILITY CRITERION 

The saturation value of ut for an initially cold beam is shown in Fig. 10 for eight 
values of B, 0.08 < B < 1.28. The curve drawn through these points is taken to 
divide the stable and unstable regions on the basis of the simulations of the preceding 
section; that is, for u,(t = 0) below the curve, nt grew to the curve and stopped; for 
ut(t = 0) above the curve, at did not grow. 

There appear to be two regions; the first occurs for 

B < lj(2~r) where wgrid 5 w,, or v&c < f, 

and the second for 

B 2 l/(277) where Wgrid 2 up or v,/Ax > f, . 

At B = 0.3, (ul/wD Ax) 2 0.046 or ut 2 0.138~~ is stable. At B = 1.28, stability 
requires tit 2 0.03611, . That is, as B increases, the thermal spread about vu required 
for stability decreases. 

The simulator has a choice: one may start with a cold beam and let the nonphysical 
growth mechanism provide growth of Q to a saturated value or one may start with 
a warm beam, ut > at saturated, see no growth and, as noted earlier, have much 
smaller electric field energy (quieter). 
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FIG. 10. Experimental determination of the thermal spread needed for stability of a beam in a 
(mathematically) gridded periodic system, using a momentum-conserving program. 

7. MECHANISM OF SATURATION 

The question is why does saturation and stabilization occur at Q/U, dx N 0.046 
for all B = vO/ws Ax 2 0.3. An answer has been provided by Albritton and Nevins 
[7] in terms of saturation by particle trapping. Their argument is now given. 

It is convenient to define a frequency, 

B k- w - k,v, 

Strong coupling between the p = 1 alias mode and the beam will occur when 
w/k, N z+, , i.e., when 52 is small. Hence, we consider the limit Q/U, < 1. In addition, 
we restrict our attention to small values of k, such that k/k, < 1, and assume that 
k(Bz+,/wll > I. The leading terms in the dispersion relation (for p = 0, 1 only) are then 

Hence, ~‘2 is purely imaginary for small, positive [. The maximum growth rate is 
determined by choosing < to maximize the absolute value of L2. We find 

at 
ymax = 0.2w, 

k/k, = 0.4, 

which is the same as the roots given earlier, Eq. (I 5). 
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In this limit (i.e., k,v,/w, 3 1) saturation occurs due to the trapping of beam 
particles in the electric field of the ahas wave. This trapping occurs when 

where 6, is the Lagrangian displacement of the beam particles due to the presence of 
the alias wave. 

The velocity spread of the beam, Q, can be estimated from the Lagrangian dis- 
placement by 

v,=IS~~ L?6J, 

where in writing the second equality we have used the fact that 12 is the frequency of 
the alias wave in the reference frame of the beam. Since trapping occurs when 
k,6, = I, it follows that the beam spread at saturation is estimated from 

Substituting the appropriate values for the fastest growing mode gives 

(U&aturation * 0.05Wp AX. 

Finally, using the Debye length of the beam as X, = vtwI, , this result may be written 
as 

&,/Ax N 0.05. 

This value is in excellent agreement with the simulation results. In addition, Fig. 6 
shows the bunching of the beam in v, - x space with a spacing equal to the wave- 
length of the p = 1 alias; at later time, these bunches form into vortices as is common 
in trapping. 

Hence, we conclude that this simple trapping model accurately describes the 
saturation of the grid-alias instability in the limit of a fast cold beam. 

8. SELF-HEATING OF A MAXWELLIAN AT SMALL h,/Ax 

A Maxwellian distribution is also nonphysically unstable for momentum conserving 
codes, especially for small values of X,/Ax. The small amplitude growth was predicted 
by Langdon [I] and observed by Langdon [l], Okuda [4], and Chen et al. [2]. However, 
the long term evolution was not found; this we have done. A Maxwellian was loaded 
with X,/Ax = 0.1, which is nonphysically unstable. The simulation was allowed to 
run for a very long time (wJ - few IOOO), during which ut increased slowly and 
appeared to approach X,/Ax w 0.3 asymptotically, where the small amplitude 
growth rate becomes quite small. Hence, the Maxwellian heats up to a new state, 
just as does the cold beam. 
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9. EFFECT OF ALIASJNG ON THE PHYSICAL TWO-STREAM INSTABILITY 

Many two-stream and beam-plasma interactions have been simulated over the past 
two decades, with no obvious reference, to our knowledge, to the effects of aliasing. 
There may have been unexplained anomalous effects that were small and ignorable 
or perhaps the simulators chose parameters to minimize aliasing effects. In any case, 
it seemed wise to us to solve the dispersion relation with aliases for a range of para- 
meters in order to display the nonphysical effects of the aliases on the physical two- 
stream instability. 

First, we show the p = 0 solutions, for which there is no aliasing, in Fig. 1 I. 
However, the grid effects in the fundamental zone remain (K and K in place of k), 
showing up as wimag/(~nhnax dropping off from 0.5 (no grid) as it occurs at larger 
and larger k Ax. 

Second, we show thep = 0, &l solutions, in Fig. 12. lncludingp == =2, $3, etc., 
presumably would add more (but slower) growing nonphysical roots, judging by the 
single-beam results. These aliases were omitted in order to avoid even more com- 
plicated diagrams. 

0.6 I 

0 1 2 3 4 kAx 

FIG. 11. Dispersion diagrams, W/C+, versus kdx for p = 0 (no aliasing) for two opposing beams, 
showing the physical two-stream instability. The fundamental-zone grid effects remain; (a)-(d) are 
for (B = uo/wDAx = 4.0, 2.0, 1.0, l/n -0.318), with [~~,,,~s.l(w~),,,~~ = 0.4967, 0.4890, 0.4631, 
0.34461 dropping off as this maximum occurs at larger kAx (= 0.22,0.42,0.76, 1 S2). Also, ~~~~~~~~~~~~~~ 
IS seen to vanish as kAx + n. 
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0 1 2 k.h 

-0.6 I 

12.5,~ 

FIG. 12. Same as Fig. 11, with p = 0, but also with p = *l aliases. (a)-(e) are for (B = 4.0, 
2.0, I ,O, 0.3, 0.15), with maximum two-stream growth rates much as before. 

For B 2 1, for k in the two-stream unstable range, the two-stream physical growth 
far exceeds that due to aliasing; for larger k, all B, there is only the alias growth, 
with a maximum of about two-fifths that of the two-stream maximum growth. 

For B decreasing below 1 .O, fw,/i:k of the physical two-stream branch changes sign. 
For B < 1/[(2)1/2rr]-1 = 0.224, wg decreases below (2)lj2 wg, which is the k = 0 
intercept of the two-stream wreill . At this small B, urea1 of the two-stream has switched 
above that of the alias instability and two branches to wimag have come in, obscuring 
the physical behavior. 

There also is a physical multistream instability, pointed out long ago by Dawson [8] 
and simulated more recently by Gitomer and Adam [9]. In their simulations the 
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initial velocity distribution function was a Maxwellian envelope made up of many 
cold beams. They observed the physical multistream instability growth (good check 
between linear theory and simulation), which then saturated at a level of (electric field 
energy) < (kinetic energy), roughly that expected of a fully random Maxwellian. 
Their total energy remained nearly constant (within 0.1 %), a trademark of physical 
behavior. The saturation, from seeing vortices in phase-space plots, appears to be by 
particle trapping. The point is that the growth seen here, while due to a trick used in 
simulation (many beams to represent a Maxwellian), is physical, predictable from 
theory for d.u + 0, At --f 0, and is not due to the spatial or temporal grid. 

10. DISCUSSION 

The cold beam instability caused by the numerical grid is found to be self-quenching, 
due to self-heating and particle trapping of the beam. For reasonable parameters, 
A, = vu/w, Ax 2 1, the quench and return to stability occurs for vt < vg ; this slight 
heating is an almost ignorable change for many simulations. Hence, while the 
instability has a very large growth rate, the net effect of slight self-heating may be 
negligible. However, for some parameters, such as v,,/w, AX 5 0.3, k Ax 2 7r/2, the 
nonphysical effects could swamp the physical problem being studied, so that care in 
design is still demanded. These comments apply only to momentum-conserving 
programs, such as CIC and PIC. 
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